
524 Final Project

May 8, 2018

Selecting Optimal Data Center within Continental US
ISyE/ECE/CS -- Introduction to Optimization -- Spring 2018

1 Selecting Optimal Data Center within Continental US

Team: * Yuliia Kapeliushna (kapeliushuna@wisc.edu) * Thomas Hansen (thansen8@wisc.edu) *
Julian Nazareth (jnazareth@wisc.edu) * Zuf Wang (xwang523@wisc.edu)

1. Yuliia Kapeliushna (kapeliushuna@wisc.edu)
2. Thomas Hansen (thansen8@wisc.edu)
3. Julian Nazareth (jnazareth@wisc.edu)
4. Zuf Wang (xwang523@wisc.edu)

1.0.1 Table of Contents

1. Section ??
2. Section ??

1. Section ??
2. Section ??

3. Section ??

1. Section ??
2. Section ??
3. Section ??
4. Section ??
5. Section ??
6. Section ??

4. Section ??
5. Section ??
6. Section ??
7. Section ??

2 Introduction

Cloud computing represents an attractive solution for many organizations since it means they no
longer have to run and manage their own data centers. Rather, they can lease server space on

1

alt text

cloud computing providers or they can build their server space out to incorporate the structure
of a content distributions network (CDN) or build caches for data intensive services. Networks
like these can be more practical and lead to lower latencies than running completely in-house data
centers or running everything from one location.

A data center is a collection of servers that stores, manages, and distributes its content both to
the organization and to its consumers. Major service providers such as Amazon (Citation), Google
(Citation), and Facebook (Citation) all have numerous data centers to serve their consumer, lower
latency, and ensure backup data centers are available in case one fails. Additionally services like
Netflix have many smaller “caches” that can greatly reduce congestion and latency by distributing
many of these across the country and sharing large video files from them (Citation). Since data
centers are the backbone of these companies, making data centers run as effectively as possible is
an important goal to achieve.

To run these data centers effectively, we must consider both costs of operation (such as cooling
servers and construction), as well as latency to access the user (approximated by distance). Al-
though cooling costs may be very low in the Arctic Circle (Citation), it is important to have data
centers where there is the demand to reduce latency and overall network congestion. Since it is
best to locate data centers in cooler climate to reduce cooling cost, we expect to see our results
will yield data centers spread evenly across the US but with a northern trend. However, in reality,
constraints beyond cooling costs, such as taxation, demand, and service type will play a role in
data center location determination. See image 1 below for a map of a few selected US-based data
centers (Citation).

We carry out this project from the perspective of an internet service provider (similar to the
AWS service) with a goal of selecting the optimal data center locations to serve a series of cities
with set amount of population. In particular, we aim to minimize overall cost while maximiz-
ing download speed. Overall cost is split into the fixed cost of doing business and variable cost
is simplified as cooling cost. The simplication of variable cost is because the majority of energy
consumption goes towards cooling the server sets. See image below to get an idea of electricty

2

https://aws.amazon.com/compliance/data-center/data-centers/
https://www.google.com/about/datacenters/
http://www.datacenterknowledge.com/data-center-faqs/facebook-data-center-faq
https://patents.google.com/patent/US9128892B2/en
https://techcrunch.com/gallery/facebook-lulea/
http://nicolasrapp.com/blog_archive/?p=1637

consumption graph.bb

alt text

consumption at data centers (Citation). Our approach seeks to understand the impact of the cost
of operations, fixed cost of having a data center, and service distance in data center location deter-
mination.

We frame our project as a set covering mixed integer program. Numerous assumptions are
made so as to keep our project within a workable scope. We will model this problem progressively
with increasing modeling complexity and will showcase each step in the process.

2. Data Our dataset contains top 50 most populous US metropolitan areas.

2.0.1 Real Data

• Metropolitan Population: Taken from US Census.
• City Long-Lat: Taken from SimpleMaps, which offers longitude and latitude data for most

major US cities.

2.0.2 Synthetic Data

These are data that we could not acquire without substantial upfront effort to standardize and pre-
process. Because this is a modeling focused project, we elected to simplify the data preprocessing
task by making up our own cost data. Real cost may differ drastically from ours.

• Fixed Cost: We used randbetween() in Excel to produce fixed costs.
• Variable Cost (Cooling Cost): We used the same randbetween() in Excel to come up

with baseline variable cost. Because we assumed that cooling cost was the only compo-
nent of variable cost, we scaled the random number generator to a city’s latitude like so
randbetween() * latitude. This is because the further south the data centers are located,
the more it costs to cool data centers because of warmer climate.

3. Mathematical Model

3

https://journal.uptimeinstitute.com/a-look-at-data-center-cooling-technologies/
https://www.census.gov/quickfacts/fact/table/US/PST045216
https://simplemaps.com/data/us-cities

This section will provide an overview of the mathematical models we used to optimize the
required server power needed for our optimization problem, as well as it will enumerate the
different sets of variables as we introduce them into our models.

3A. Assumptions In order to produce a functional model within the limited time, we made
numerous simplifying assumptions.

1. Every city is within 800 kilometers of a data center (for Models 0 and 1 only).

2. For Models 2 and 3, the shorter the distance between the city and data center the better.
3. Each person on average uses 0.001 TB of storage.
4. In reality, data centers do not have to be located in the center of the city and could be a few

miles out. For the sake of hiring talent and the scope of this project, we assume that data
centers are within a metro area.

5. Each data center has a maximum storage capacity of 106 TB.
6. Real world cloud storage work very differently then our assumption, which functions closer

to physical storage warehouses.
7. Fixed costs are greater than variable costs.
8. Demand for storage is population dependent. We make no distinction between individual

user and group user. This in reality is not true since some cities will have higher demand
due to local industry and cultural trends.

3B. Model

2.0.3 Global Parameters and Constants

• m denotes total number of cities.
• consumed = 0.001
• distance_limit = 800
• r = 6372.8. Earth radius.

2.0.4 Calculating Distance

We elected to calculate distance using this Haversine Formula in order to incorporate earth’s cur-
vature.

disti,j = 2 ∗ r ∗ sin−1
√

sin((latj − lati)/2)2 + cos(lati) + cos(latj) + sin((lonj − loni)/2)2 ∀i, j ∈ {1...m}

where: * lat and lon represents latitude and longitude of each city, respectively. * disti,j repre-
sents the matrix of distances between city i and j.

Given the assumption that each data center must be located within 800 kilometers of the cities it
serves, we use seti,j, a binary 2d array, to denote set of cities i and j that are less than 800 kilometers
from each other. If the distance less than 800 kilometers, the set is 1, otherwise is 0.

Model 0.0 This model seeks to find the minimal number of data centers needed based on
the distance limit.

Decision Variable We use ci as binary variable to represent which city i will host a data center.

ci ∈ {0, 1} ∀i ∈ {1...m}

4

https://rosettacode.org/wiki/Haversine_formula#Julia

Constraints This contraint ensures that each city is within 800 kilometers of a data center. It
does not need to be served by the closest data center.

seti,j ∗ ci ≥ 1 ∀i, j ∈ {1...m}

Objective We seek to minimize the number of data centers needed based purely on distance.

f (c) =
i=m

∑
1

ci ∀i ∈ {1...m}

Standard Form

minimize
i=m

∑
1

ci

subject to: set ∗ ci ≥ 1 ∀i, j ∈ {1...m}

Model 1.0 This model seeks to allocate storage to each data center based on population
census without consideration of fixed cost. It is built upon Model 0.

Matrices from Model 0.0 selectedi,j ∀i, j ∈ {1...m} stores the result of c decision variable.
selseti,j ∀i, j ∈ {1...m} stores the optimal layout that gurantees the minimal data centers in US

that serves all cities within 800 kilometers.
Decision Variables We use stori to denote storage size allocated to each data center.

stori ≥ 0 ∀i ∈ {1...m}

Constraints Storage upper bound constraint, ensuring that cities that do not host data centers
do not store data.

stori ≤ selectedi,j ∗ max ∀i, j ∈ {1...m}

Storage lower bound constraint to meet minimal demand.

consumed ∗ selseti,j ∗ censusj ≤ stori ∀j ∈ {1...m}

Objective We use coolingi to denote cooling cost of hosting a data center in city i. We seek to
minimize overall cooling cost.

f (c) =
i=m

∑
1

stori ∗ coolingi

Standard Form

minimize
i=m

∑
1

stori ∗ coolingi

subject to: stori ≤ selectedi,j ∗ max ∀i, j ∈ {1...m}
consumed ∗ selseti,j ∗ censusj ≤ stori ∀j ∈ {1...m}

Model 2.0 Finding data center with consideration of fixed cost alone along with various
service constraints that each data center has to fulfill.

5

Weight factor λ = 1 to place equal weight for fixed cost and distance.
Decision Variables We use ci as binary variable to represent which city i will host a data center.

ci ∈ {0, 1} ∀i ∈ {1...m}

We use dci,j to denote set of data centers i that serves cities j.

dci,j ∈ {0, 1} ∀i ∈ {1...m}

Constraints This contraint ensures that each city is within 800 kilometers of a data center. It
does not need to be served by the closest data center.

seti,j ∗ ci ≥ 1 ∀i, j ∈ {1...m}

For the sake of not overburdening any single data center, we elect to have each data center
serve no more than half of all client cities.

i=m

∑
1

dci,j ≤ ci ∗
m
2

∀j ∈ {1...m}

This constraint ensures that each city is serviced.

j=m

∑
1

dci,j = 1 ∀i ∈ {1...m}

Ensures each city that hosts a data center serves itself. In other words, we are matching the
diagonal values.

dci,i = ci ∀i ∈ {1...m}

Objective Here we minimize both variable cost and distance from data center i to city j. We
wished to more accurately simulate real world fixed cost, hence the 106 multiplier.

f (c) = λ ∗
i=m

∑
1
(f ixedi ∗ max ∗ ci) +

i=m

∑
1

j=m

∑
1
(disti,j ∗ dci,j)

Standard Form Combined, our model yields:

minimize λ ∗
i=m

∑
1
(f ixedi ∗ max ∗ ci) +

i=m

∑
1

j=m

∑
1
(disti,j ∗ dci,j)

subject to: dci,i = ci ∀i ∈ {1...m}
j=m

∑
1

dci,j = 1 ∀i ∈ {1...m}

i=m

∑
1

dci,j ≤ ci ∗
m
2

∀j ∈ {1...m}

seti,j ∗ ci ≥ 1 ∀i, j ∈ {1...m}

6

Model 3.0 This is our most complex model which combines the previous constraints and
decision variables.

Weight factor λ = 1 to place equal weight for fixed cost and distance.
Decision Variables We use ci as binary variable to represent which city i will host a data center.

ci ∈ {0, 1} ∀i ∈ {1...m}

We use dci,j as binary variable to represent data center in city i serving city j.

dci,j ∈ {0, 1} ∀i, j ∈ {1...m}

We use stori to denote storage size allocated to each data center.

stori ≥ 0 ∀i ∈ {1...m}

Constraints This contraint ensures that each city is within 800 kilometers of a data center. It
does not need to be served by the closest data center.

seti,j ∗ ci ≥ 1 ∀i, j ∈ {1...m}

For the sake of not overburdening any single data center, we elect to have each data center
serve no more than half of all client cities.

i=m

∑
1

dci,j ≤ ci ∗
m
2

∀j ∈ {1...m}

This constraint ensures that each city is serviced.

j=m

∑
1

dci,j = 1 ∀i ∈ {1...m}

This constraints requires each data center to be allocated a minimal amount of storage that
would meet the demand of cities served. Demand is represented by population.

consumed ∗
j=m

∑
1

dci,j ∗ censusj ≤ stori ∀i ∈ {1...m}

Ensures that each city that hosts a data center serves itself. In other words, we are matching
the diagonal values.

dci,i = ci ∀i ∈ {1...m}

Objective Minimize all factors: variable cost, fixed cost, and distance from data center i to
serviced city j.

f (c) = λ ∗
i=m

∑
1

j=m

∑
1
(disti,j ∗ dci,j) +

i=m

∑
1
(coolingi ∗ stori + f costi ∗ ci)

Standard Form Combined, our model yields:

7

minimize λ ∗
i=m

∑
1

j=m

∑
1

disti,j ∗ dci,j +
i=m

∑
1
(coolingi ∗ stori + f costi ∗ ci)

subject to: seti,j ∗ ci ≥ 1 ∀i, j ∈ {1...m}
i=m

∑
1

dci,j ≤ ci ∗
m
2

∀j ∈ {1...m}

j=m

∑
1

dci,j = ci ∀i ∈ {1...m}

consumed ∗
j=m

∑
1

dci,j ∗ censusj ≤ stori ∀i ∈ {1...m}

dci,i = ci ∀i ∈ {1...m}

4. Code

In [3]: using JuMP, Cbc

Data import

In [4]: raw = readcsv("data.csv")
(c, n) = size(raw)

m = c-1
n_metro = 1:m
readFile = 2:c

metro = raw[readFile, 2][:]
census = raw[readFile, 3][:]
lat = raw[readFile, 4][:]
long = raw[readFile, 5][:]
fixed = raw[readFile, 6][:]
cooling = raw[readFile, 7][:]

for i = n_metro
lat[i] =convert(Float64, lat[i])
long[i] =convert(Float64, long[i])

end

Helper Functions

In [5]: # haversine function for distance calculation
haversine(lat1, lon1, lat2, lon2) = 2 * 6372.8 * asin(sqrt(sind((lat2 - lat1) / 2) ^ 2 + cosd(lat1) * cosd(lat2) *

sind((lon2 - lon1) / 2) ^ 2))

data center serves cities within 800 miles of each other
distance_limit = 800

8

initializing empty matrices
dist = zeros(m,m)
set = zeros(m,m)

set of distances from city i to j
for i = n_metro

for j = n_metro
dist[i, j] = haversine(lat[i], long[i], lat[j], long[j])

end
end

set of cities within service limit
for i = n_metro

for j = n_metro
if dist[i,j] < distance_limit

set[i,j] = 1
end

end
end

In [6]: # print output with labels corresponding to the map.
function printDataCenter(vals::Array{Float64,1})

label markers that match the maps produced by Batchgeo
Letter = ["A","B","C","D","E","F","G","H","I","J","K","L","M"]
count = 1;
a = vals
println("Data center locations: ")
for i in 1:length(a)

if (vals[i] == 1)
println(Letter[count], ": ", metro[i], " area.")
count = count+1

end
end

end;

In [7]: # applicable to model 1
function printStorageAtDC(storage::Array{Float64,1})

for i in 1:length(storage)
if (storage[i] > 0)

println("The ", metro[i], " data center is allocated ", storage[i], " TB of storage.")
end

end
end;

In [8]: # applicable to models 2 and 3 to print cities j served by data center i.
function printCityServed(vals::Array{Float64,2})

for i = 1:m

9

a diagonal value of 1 indicates a data center is located in city i
if (vals[i,i] == 1)

println("The data center in the [", metro[i], "] area serves: ")
for j = 1:m

if (vals[i,j]==1)
println(" - ", metro[j])

end
end
println()

end
end

end;

Model 0.0

In [9]: mod0 = Model(solver=CbcSolver())

selected cities
@variable(mod0, c[1:m], Bin)

ensures each city is within 800 kilometers of a data center.
@constraint(mod0, set * c .>= ones(m))

minimize total number of data centers
@objective(mod0, Min, sum(c))

solve(mod0)

Mod0 = getvalue(c);

Storing result of Model 0.0 for use in Model 1.0

In [10]: # stores the value of c
selected = zeros(m,m)
for i = 1:m

selected = getvalue(c)
end

determine which cities each selected data center serves
sel_set = zeros(m,m)
for i = 1:m

if selected[i] == 1
for j = 1:m

sel_set[i,j] = set[i,j]
end

end
end

Model 1.0

10

In [11]: mod1 = Model(solver=CbcSolver())

max storage size in TB
max = 10^6

assumed per person data consumption. Unit TB.
consumed = 0.001

storage size at each data center
@variable(mod1, stor[1:m] >= 0)

initalizing an empty expression
@expression(mod1, cost, 0)

binary upper bound
@constraint(mod1, stor .<= selected * max)

expression for cooling cost with respect to storage size
for i = 1:m

@expression(mod1, cost, cost + (cooling[i] * stor[i]))
end

minimal storage at each data center that would meet the demand of all cities.
@constraint(mod1, [i=1:m], sum(consumed * sel_set[i,j] * census[j] for j=1:m) <= stor[i])

@objective(mod1, Min, cost)

solve(mod1)

cost2 = getobjectivevalue(mod1);
storage = getvalue(stor);

Model 2.0

In [12]: # *****************************DO Not Run This Block of Code More Than Once***
setting a large fixed cost multiplier for Model 2.0 and 3.0.

multiplier = 1e5;
fixed = fixed * multiplier;

In [13]: mod2 = Model(solver=CbcSolver())

max storage
max = 10^6

assumed per person data consumption. Unit TB.
consumed = 0.001

11

vec = ones(m)

lambda = 1

@variable(mod2, c[1:m], Bin)

set of data centers i that serves cities j
@variable(mod2, dc[1:m,1:m], Bin)

ensures each city is within 800 kilometers of a data center
@constraint(mod2, set * c .>= vec)

fixed cost
@expression(mod2, fcost, (0 * cooling + fixed)' * c)

each data center location can serve no more than m/2 cities
@constraint(mod2, [i in 1:m], sum(dc[i,:]) <= c[i]*(m/2))

each city should be served
@constraint(mod2, [j in 1:m], sum(dc[:,j]) == 1)

ensure 1) each data center i in city i serves itself and 2) minimum distance of 0 is not chosen
for cities that do not have datacenters in its location
for i=1:m

@constraint(mod2, dc[i,i] == c[i])
end

calculates sum of distances between data center i and city j
@expression(mod2, distance, sum(dist[i,j] * dc[i,j] for i=1:m, j=1:m))

@objective(mod2, Min, lambda * fcost + distance)

solve(mod2)

Mod2 = getvalue(c);
fixed_cost2 = getvalue(fcost);
dist2 = getvalue(distance);
dc2 = getvalue(dc);

Model 3.0

In [14]: mod3 = Model(solver=CbcSolver())

vec = ones(m)

max storage
max = 10^6

12

assumed per person data consumption. Unit TB.
consumed = 0.001

@variable(mod3, c[1:m], Bin)

storage size at each data center
@variable(mod3, stor[1:m] >= 0)

set of data centers i that serves cities j
@variable(mod3, dc[1:m, 1:m], Bin)

ensures each city is within 800 kilometers of a data center.
@constraint(mod3, set * c .>= vec)

each data center location can serve no more than m/2 cities
@constraint(mod3, [i in 1:m], sum(dc[i,:]) <= c[i]*(m/2))

each city should be served
@constraint(mod3, [j in 1:m], sum(dc[:,j]) == 1)

ensure 1) each data center i in city i serves itself and 2) minimum distance of 0 is not chosen
for cities that do not have datacenters in its location
for i=1:m

@constraint(mod3, dc[i,i] == c[i])
end

binary upper bound
@constraint(mod3, stor .<= c * max)

initalizing an empty expression
@expression(mod3, vcost, 0)

expression for cooling cost with respect to storage size
for i = 1:m

@expression(mod3, vcost, vcost + (cooling[i] * stor[i]))
end

fixed cost
@expression(mod3, fcost, (0 * cooling + fixed)' * c)

minimal storage at each data center that would meet the demand of all cities.
@constraint(mod3, [i=1:m], sum(consumed * dc[i,j] * census[j] for j=1:m) <= stor[i])

ensures data center serves the city it's built in, or doesn't serve itself if there's no data center present.
@expression(mod3, distance, sum(dist[i,j] * dc[i,j] for i=1:m, j=1:m))

@objective(mod3, Min, vcost + fcost + distance)

13

alt text

solve(mod3)

Mod3 = getvalue(c);
var_cost3 = getvalue(vcost);
fix_cost3 = getvalue(fcost);
dist3 = getvalue(distance);
dc3 = getvalue(dc);

5. Results and Discussion We exported our result to Batchgeo and created the below maps to
indicate data center locations.

Model 0.0
The above map indicates the set of cities where a data center should be built when considering

the distance limit alone. In this simple model, we see an even scatter of data center locations
across continental US, which is sensible from a distance perspective. Most of US population are
concentrated on the coasts and in the south, so data centers constrained by distance are scattered
in those regions. This map roughly resembles image 1 from our introduction.

We did expect to see data centers in northern states, but because this model did not involve
cooling cost, the result did not meet this expectation.

This model nevertheless is not grounded in reality because data centers are rarely built based
on distance. Therefore, we move on to Models 2 and 3 to incorporate further constraints.

Model 1.0

In [16]: printStorageAtDC(storage)

The Houston-The Woodlands-Sugar Land, TX data center is allocated 21187.071999999996 TB of storage.
The Seattle-Tacoma-Bellevue, WA data center is allocated 5924.659 TB of storage.
The San Diego-Carlsbad, CA data center is allocated 35801.878000000004 TB of storage.
The Tampa-St. Petersburg-Clearwater, FL data center is allocated 20265.448999999997 TB of storage.
The Baltimore-Columbia-Towson, MD data center is allocated 62670.787000000004 TB of storage.

14

https://batchgeo.com/

The Denver-Aurora-Lakewood, CO data center is allocated 3837.959 TB of storage.
The Kansas City, MO-KS data center is allocated 33877.093 TB of storage.

In addition to Model 0, we wanted to see how much storage space each data center would
receive in terms of demand. Each data center is bounded by a maximum storage limit and must
at least meet customer demand.

The result of this trivial model shows that storage allocation is directly scaled to population.
Therefore, once again, this model lacks realness because there are factors other than customer
population for demand. We include this model mainly as a logic and functionality check prior to
increasing complexity.

Model 2.0

In [17]: display("image/png", read("Model2.png"))
printDataCenter(Mod2)
println()
println("Overall fixed cost for all data centers is \$", fixed_cost2, ".")
println("Shortest distance between data centers and all its serviced cities is ", dist2, " kilometers.")
println("--")
printCityServed(dc2)

Data center locations:
A: Dallas-Fort Worth-Arlington, TX area.
B: Riverside-San Bernardino-Ontario, CA area.
C: Denver-Aurora-Lakewood, CO area.
D: Portland-Vancouver-Hillsboro, OR-WA area.
E: Orlando-Kissimmee-Sanford, FL area.
F: Milwaukee-Waukesha-West Allis, WI area.

15

G: Richmond, VA area.

Overall fixed cost for all data centers is $1.50983e10.
Shortest distance between data centers and all its serviced cities is 19073.22181056693 kilometers.
--
The data center in the [Dallas-Fort Worth-Arlington, TX] area serves:

- Dallas-Fort Worth-Arlington, TX
- Houston-The Woodlands-Sugar Land, TX
- San Antonio-New Braunfels, TX
- Austin-Round Rock, TX
- Memphis, TN-MS-AR
- Oklahoma City, OK
- New Orleans-Metairie, LA

The data center in the [Riverside-San Bernardino-Ontario, CA] area serves:
- Los Angeles-Long Beach-Anaheim, CA
- San Francisco_Oakland_Hayward, CA
- Phoenix-Mesa-Scottsdale, AZ
- Riverside-San Bernardino-Ontario, CA
- San Diego-Carlsbad, CA
- Sacramentoosevillerden-Arcade, CA
- Las Vegas-Henderson-Paradise, NV
- San Jose-Sunnyvale-Santa Clara, CA

The data center in the [Denver-Aurora-Lakewood, CO] area serves:
- Denver-Aurora-Lakewood, CO
- Salt Lake City, UT

The data center in the [Portland-Vancouver-Hillsboro, OR-WA] area serves:
- Seattle-Tacoma-Bellevue, WA
- Portland-Vancouver-Hillsboro, OR-WA

The data center in the [Orlando-Kissimmee-Sanford, FL] area serves:
- Miami-Fort Lauderdale-West Palm Beach, FL
- Atlanta-Sandy Springs-Roswell, GA
- Tampa-St. Petersburg-Clearwater, FL
- Orlando-Kissimmee-Sanford, FL
- Jacksonville, FL
- Birmingham-Hoover, AL

The data center in the [Milwaukee-Waukesha-West Allis, WI] area serves:
- Chicago-Naperville-Elgin, IL-IN-WI
- Detroit-Warren-Dearborn, MI
- Minneapolis-St. Paul-Bloomington, MN-WI
- St. Louis, MO-IL
- Cincinnati, OH-KY-IN
- Cleveland-Elyria, OH
- Kansas City, MO-KS

16

- Columbus, OH
- Indianapolis-Carmel-Anderson, IN
- Nashville-Davidsonurfreesbororanklin, TN
- Milwaukee-Waukesha-West Allis, WI
- Louisville/Jefferson County, KY-IN

The data center in the [Richmond, VA] area serves:
- New York-Newark-Jersey City, NY-NJ-PA
- Philadelphia-Camden-Wilmington, PA-NJ-DE-MD
- Washington-Arlington-Alexandria, DC-VA-MD-WV
- Boston-Cambridge-Newton, MA-NH
- Baltimore-Columbia-Towson, MD
- Pittsburgh, PA
- Charlotte-Concord-Gastonia, NC-SC
- Virginia Beach-Norfolk-Newport News, VA-NC
- Providence-Warwick, RI-MA
- Richmond, VA
- Hartford-West Hartford-East Hartford, CT
- Raleigh, NC
- Buffalo-Cheektowaga-Niagara Falls, NY

The above map shows the set of cities where a data center should be built when taken into
the account of fixed cost and service distance. We wanted to make sure that each city is within
800 kilometers to a data center, however, taking into account the fixed costs and the distance from
data center towards the server cities. The cities might not be served by the closest data center due
to variations in cost at each data center.

Although we equally weighted cost and distance, the cost had a larger affect on our objective
because cost is 105 times greater than distance

Comparing data center allocation between Models 0 and 2: * The Houston center moved to
Dallas. * The Kansas City center moved to Milwaukee. * The Tampa center moved to Orlando. *
The Seattle center moved to Portland.

This change in allocation is interesting because the overall data center spread moved towards
central US. This corresponds to the objective of minimizing overall service distance. In terms
of cities served, it appears that the data centers mostly serves regional cities. For example, the
Richmond center serves all mid Atlantic cities and the Milwaukee center serves all midwest cities.
We expect to see a different result with the addition of cooling cost in Model 3.

Model 3.0

In [18]: display("image/png", read("Model3.png"))
printDataCenter(Mod3)
println()
println("Overall fixed cost for all data centers is \$", fix_cost3, ".")
println("Overall variable cost for all data centers is \$", var_cost3, ".")
println("Shortest distance between data centers and all its serviced cities is ", dist3, " kilometers.")
println("--")
printCityServed(dc3)

17

Data center locations:
A: Dallas-Fort Worth-Arlington, TX area.
B: Riverside-San Bernardino-Ontario, CA area.
C: Denver-Aurora-Lakewood, CO area.
D: Portland-Vancouver-Hillsboro, OR-WA area.
E: Orlando-Kissimmee-Sanford, FL area.
F: Milwaukee-Waukesha-West Allis, WI area.
G: Richmond, VA area.

Overall fixed cost for all data centers is $1.50983e10.
Overall variable cost for all data centers is $1.01885791483876e9.
Shortest distance between data centers and all its serviced cities is 77174.17372286758 kilometers.
--
The data center in the [Dallas-Fort Worth-Arlington, TX] area serves:

- Dallas-Fort Worth-Arlington, TX

The data center in the [Riverside-San Bernardino-Ontario, CA] area serves:
- Riverside-San Bernardino-Ontario, CA

The data center in the [Denver-Aurora-Lakewood, CO] area serves:
- Denver-Aurora-Lakewood, CO
- Kansas City, MO-KS
- Las Vegas-Henderson-Paradise, NV
- Columbus, OH
- Indianapolis-Carmel-Anderson, IN
- San Jose-Sunnyvale-Santa Clara, CA
- Austin-Round Rock, TX
- Nashville-Davidsonurfreesbororanklin, TN

18

- Virginia Beach-Norfolk-Newport News, VA-NC
- Providence-Warwick, RI-MA
- Jacksonville, FL
- Memphis, TN-MS-AR
- Oklahoma City, OK
- Louisville/Jefferson County, KY-IN
- New Orleans-Metairie, LA
- Hartford-West Hartford-East Hartford, CT
- Raleigh, NC
- Salt Lake City, UT
- Birmingham-Hoover, AL
- Buffalo-Cheektowaga-Niagara Falls, NY

The data center in the [Portland-Vancouver-Hillsboro, OR-WA] area serves:
- Portland-Vancouver-Hillsboro, OR-WA

The data center in the [Orlando-Kissimmee-Sanford, FL] area serves:
- New York-Newark-Jersey City, NY-NJ-PA
- Los Angeles-Long Beach-Anaheim, CA
- Chicago-Naperville-Elgin, IL-IN-WI
- Houston-The Woodlands-Sugar Land, TX
- Philadelphia-Camden-Wilmington, PA-NJ-DE-MD
- Washington-Arlington-Alexandria, DC-VA-MD-WV
- Miami-Fort Lauderdale-West Palm Beach, FL
- Atlanta-Sandy Springs-Roswell, GA
- Boston-Cambridge-Newton, MA-NH
- San Francisco_Oakland_Hayward, CA
- Phoenix-Mesa-Scottsdale, AZ
- Detroit-Warren-Dearborn, MI
- Seattle-Tacoma-Bellevue, WA
- Minneapolis-St. Paul-Bloomington, MN-WI
- San Diego-Carlsbad, CA
- Tampa-St. Petersburg-Clearwater, FL
- St. Louis, MO-IL
- Baltimore-Columbia-Towson, MD
- Pittsburgh, PA
- Charlotte-Concord-Gastonia, NC-SC
- San Antonio-New Braunfels, TX
- Orlando-Kissimmee-Sanford, FL
- Sacramentoosevillerden-Arcade, CA
- Cincinnati, OH-KY-IN
- Cleveland-Elyria, OH

The data center in the [Milwaukee-Waukesha-West Allis, WI] area serves:
- Milwaukee-Waukesha-West Allis, WI

The data center in the [Richmond, VA] area serves:
- Richmond, VA

19

The above map shows the set of cities hosting data centers when taken into the account of fixed
cost, variable cost, and service distance. When compared with Model 2, the data centers are still
located in the same cities. However, there is a substantial difference in cities served by each data
center. Notably, the data centers no longer serve cities in its region. For example, the FL center
also services western states such as AZ and CA as well as Midwestern states such as MI and OH.
The variable costs have a bigger effect on the objective function than distance. Thus, we can see
some cities served by a data center that is located far from the city, because the variable costs of
the further data center can be significantly lower than the variable costs of a closer data center

Upon closer inspection, it’s also clear that in Model 3, cities served per data center becomes
polarized. This is characterized by the CO and FL centers servicing the majority of cities while
the other data centers only serve its own city’s population. We did not expect this result, but it is
sensible.

6. Conclusion
This report investigates the placement of data centers approximated by the distance from

servers to consumers. We were able to demonstrate the best placement for new data centers given
a required maximum distance (approximating latency), as well as the approximate data storage
size. The program could be used in the following ways:

1. Discover the best places to put caching servers in the US to reduce latency (using a small
latency or distance).

2. Discover the best places to put CDN servers in the US to reduce latency (where we’d set a
larger latency, or distance).

3. Locate the best locations to open up new data centers, especially those moving off of AWS
and looking to set up their own server farms.

4. Research and compare the current state of major data center hubs and compare it with what
would be optimal.

Moving forward in the project would be to continue to add more functionality into the place-
ment of data centers. Adding increased complexity in the calculations of costs (such as detailed
taxes and cost of talent in that area, such as Network Engineers in the bay area would be more
expensive than outside of Boston), as well as the ability to find optimal cities given data centers
already in place. For increased accuracy, other factors should be included rather than just popula-
tion to estimate demand. Specifically, we would distinguish individual users from corporate and
academic users as well as incorporating existing internet traffic. Lastly expanding these calcula-
tions to beyond the US would allow more areas to benefit from these algorithms.

Appendix
Below is the data used to calculate our data, based on (in order) the city, census, longitude,

latitude, populations, and fixed costs of the cities, where the "fixed costs" were quasi random
based off real estimations.

In [19]: println("City #: population latitude longitude cooling fixed")
for i = 1:m

@printf("City %2d: ",i)
@printf("%9.4d | ", census[i]);
@printf("%6.2d | ", lat[i])
@printf("%7.2d | ", long[i])

20

@printf("%6.2d | ", cooling[i])
@printf("%6.2d |\n", fixed[i])

end

City #: population latitude longitude cooling fixed
City 1: 19949502 | 41 | -74 | 5929 | 2418400000 |
City 2: 13131431 | 34 | -118 | 6595 | 2327000000 |
City 3: 9537289 | 42 | -88 | 5812 | 2206700000 |
City 4: 6810913 | 33 | -97 | 6722 | 2027200000 |
City 5: 6313158 | 30 | -95 | 7024 | 2244500000 |
City 6: 6034678 | 40 | -75 | 6005 | 2751500000 |
City 7: 5949859 | 39 | -77 | 6109 | 2048200000 |
City 8: 5828191 | 26 | -80 | 7421 | 2448200000 |
City 9: 5522942 | 34 | -84 | 6625 | 2386400000 |
City 10: 4684299 | 42 | -71 | 5764 | 2122900000 |
City 11: 4516276 | 38 | -122 | 5929 | 2418400000 |
City 12: 4398762 | 33 | -112 | 5812 | 2206700000 |
City 13: 4380878 | 34 | -117 | 6722 | 2027200000 |
City 14: 4294983 | 42 | -83 | 7024 | 2244500000 |
City 15: 3610105 | 48 | -122 | 6005 | 2751500000 |
City 16: 3459146 | 45 | -93 | 6005 | 2751500000 |
City 17: 3211252 | 33 | -117 | 6109 | 2048200000 |
City 18: 2870569 | 28 | -82 | 7421 | 2448200000 |
City 19: 2810056 | 39 | -90 | 6625 | 2386400000 |
City 20: 2770738 | 39 | -77 | 5764 | 2122900000 |
City 21: 2697476 | 40 | -105 | 5929 | 2418400000 |
City 22: 2360867 | 40 | -80 | 6595 | 2327000000 |
City 23: 2335358 | 35 | -81 | 6109 | 2048200000 |
City 24: 2314554 | 46 | -123 | 7421 | 2448200000 |
City 25: 2277550 | 29 | -98 | 6625 | 2386400000 |
City 26: 2267846 | 29 | -81 | 5764 | 2122900000 |
City 27: 2215770 | 39 | -121 | 5929 | 2418400000 |
City 28: 2137406 | 39 | -85 | 6595 | 2327000000 |
City 29: 2064725 | 42 | -82 | 5812 | 2206700000 |
City 30: 2054473 | 39 | -95 | 6109 | 2048200000 |
City 31: 2027868 | 36 | -115 | 7421 | 2448200000 |
City 32: 1967066 | 40 | -83 | 6625 | 2386400000 |
City 33: 1953961 | 40 | -86 | 5764 | 2122900000 |
City 34: 1919641 | 37 | -122 | 6722 | 2027200000 |
City 35: 1883051 | 30 | -98 | 7024 | 2244500000 |
City 36: 1757912 | 36 | -87 | 6005 | 2751500000 |
City 37: 1707369 | 37 | -76 | 6595 | 2327000000 |
City 38: 1604291 | 42 | -71 | 5812 | 2206700000 |
City 39: 1569659 | 43 | -88 | 6722 | 2027200000 |
City 40: 1394624 | 30 | -82 | 7024 | 2244500000 |
City 41: 1341746 | 35 | -90 | 5929 | 2418400000 |
City 42: 1319677 | 35 | -98 | 6595 | 2327000000 |
City 43: 1262261 | 38 | -86 | 5812 | 2206700000 |

21

City 44: 1245764 | 38 | -77 | 6722 | 2027200000 |
City 45: 1240977 | 30 | -90 | 7024 | 2244500000 |
City 46: 1215211 | 42 | -73 | 6005 | 2751500000 |
City 47: 1214516 | 36 | -79 | 6109 | 2048200000 |
City 48: 1140483 | 41 | -112 | 7421 | 2448200000 |
City 49: 1140300 | 34 | -87 | 6625 | 2386400000 |
City 50: 1134155 | 43 | -79 | 5764 | 2122900000 |

22

	Selecting Optimal Data Center within Continental US
	Table of Contents
	Real Data
	Synthetic Data
	Global Parameters and Constants
	Calculating Distance

