
AUCS: Communication between Autonomous Vehicles using Ultrasonic Sensors,
or Autonomous Ultrasonic Communication System.

Thomas Hansen
UW Madison

Ajene Johnson
UW Madison

Abstract

As we move forward in time, an increasing number of cars
are expected to be either semi or fully autonomous, a trend
we are seeing from major car manufacturers and startups
such as Tesla, Uber, and Waymo. These cars usually have ul-
trasonic and visual sensors on them, and some such as Uber
and Waymo additionally use Lidar to help map the world
around them. Our system takes some of the pre existing sen-
sors, namely ultrasonic sensors, and is able to communicate
basic intentions between cars to allow them to more easily
communicate whether they want to move into a lane, change
speeds, or perform other basic functionality.

1 Introduction

Currently, if a vehicle tries to merge into a lane in front of
your semi-autonomous car, you’ll likely experience a quick
jerking motion as your vehicle adjusts to the new vehicles
speed and position. If you ride in a Waymo vehicle, you will
experience long waits as you attempt to merge into traffic or
change lanes, as the car needs to be certain the merge will
be safe. Autonomous vehicles currently aren’t very good at
predicting the movements of other cars, or optimizing ride
comfort, which is where our system comes in. We hope
to alleviate this issue by providing autonomous vehicles the
intended movement of surrounding vehicles, similar to the
types of communication humans already participate in when
they wave someone in or preemptively slow down. Most au-
tonomous communications systems, such as CarSpeak, at-
tempt to share a map of the world with all the cars around
it, allowing other cars to see a shared map of all objects
and things around it [3]. AVR attempts to share large point
clouds of their surroundings to other cars, dealing with band-
width issues and large processing requirements [2]. Our sys-
tem communicates similarly to how people do, telling other
cars around it what actions it intends to make, and waiting
for them to change their behavior so it may perform the ac-
tion. This is more similar to a driver waving another car past

compared to telling it what is sees, and is less of a risk to
the driver and the car since the information shared is only
recorded as received once the receiving car changes its be-
havior in accordance with the message.

Autonomous Ultrasonic Communication System, or
AUCS, is an important change of direction for inter-car com-
munication, because instead of attempting to share the world
around it and transmit complex point clouds between cars,
it simplifies the entire process. Cars communicate between
each other using hardware on the car that is already present,
and require less significant changes to the driving algorithms
to function. Cars send out a request to perform a function
to the cars around it, and it continues to wait for an opening
to perform the action. If an opening appears, it may use it,
and if a car responds and moves because of the message, it
may take the opening as well. Our system doesn’t require a
new allocation of bandwidth and doesn’t break down if other
cars in its vicinity do not have the system. AUCS improves
rider quality, creating a more pleasant driving experience and
preventing accidents where predictive information could be
used in collision avoidance.

2 Related Work

Our contributions provide a new insight into communication
between autonomous vehicles. Most other related work in-
volves sharing visual data and point clouds between vehi-
cles. Ours communications uses preexisting ultrasonic sen-
sors, and only shares intents, not acknowledgements or be-
havior. This makes it less vulnerable to threats and more
similar to how humans behave while driving on the road. Our
major contributions to this paper are as follows

• Communication on bands typically reserved for ultra-
sonic distance detection.

• Is able to receive messages and interpret them using ul-
trasonic bands



• Receiving messages despite ambient interference from
ultrasonic sensors

• Creating a list of action codes relevant to car motion

2.1 Ultrasonic Sensors in Autonomous Vehi-
cles

There already exists a precedent for using ultrasonic sound
in autonomous vehicles. As stated previously, semi-
autonomous and fully-autonomous vehicles have ultrasonic
sensors already installed to measure their proximity to their
surroundings and prevent collisions. For example, Tesla’s
Enhanced Autopilot system has twelve ultrasonic sensors
surrounding the car, each with a range of about 8 meters.
These systems, in their current implementation, are only ben-
eficial to a single car. By implementing AUCS, these systems
can transmit data that will make autonomous driving bene-
ficial to other cars on the road. Implementing AUCS would
have a low overhead because autonomous vehicles already
have a setup that allows them to determine the signals loca-
tion, since ultrasound is currently used to map out the sur-
rounding area.

2.2 Ultrasonic Sensors in Communication

Cellphones are currently taking advantage of ultrasonic bea-
cons in multiple ways. Google Chromecast, a wireless de-
vice that plugs into a TV’s HDMI port, pairs with cellphones
and computers by emitting ultrasonic beacons to send a pin
to users’ devices. This establishes a connection between the
device and Chromecast to take place, without being beholden
to the owners WiFi network. This is done as a security mea-
sure to ensure the user connecting to the device is in fact
in the room nearby, and sends a number of inaudible audio
tones that can be registered on the phones microphone, veri-
fying the user [4].

Another popular use of ultrasonic emissions is cross-
device tracking [6]. Cross-device tracking is the action of
tracking users across multiple devices by using ultrasonic
signals emitted by one device and received by another de-
vice’s microphone. One utilization of cross-device track-
ing is advertising. Companies will inject ultrasonic beacons
into their online ads, which will be recognized by the user’s
cellphones, and deliver relevant advertisements to the users’
phones.

The United States Army has looked into using ultrasonic
communication as an Identification of Friend-or-Foe (IFF)
technique [1]. The authors say that ultrasonic communica-
tion is highly feasible for systems that do not require a high
throughput, and that multipathing effects can be turned into
a geographic advantage when sending data at lower bit rates.
This is perfect for AUCS because we do not need to transfer

data at high bit rates and only simple information needs to be
sent, as is the case with IFF.

3 Methodology

3.1 Frequency Shift Keying
In order to produce and interpret data using ultrasonic sen-
sors, we created a protocol that utilizes the Frequency Shift
Keying (FSK) technique. FSK works by establishing a car-
rier frequency, then modulating the frequency to represent
different bits. Our specific implementation was Binary FSK.
In this implementation of FSK, the carrier frequency is mod-
ulated to a higher frequency in order to represent a ”1” or
the mark frequency. A ”0” is represented by modulating the
signal to a lower frequency, which is known as the space fre-
quency.

Figure 1: The first diagram is the data packet that will be
sent. The second diagram is the carrier frequency that will
be modulated to represent the bits. The last diagram is what
the carrier frequency looks like after it is modulated to higher
and lower frequencies.

3.2 Protocol
The AUCS protocol transmits packets that are 18 bits in
length. The first three bits are the preamble, which allows
receivers to recognize that a packet is being transmitted. The
preamble is ”101” because this will allow receivers to dis-
tinguish which frequency represents a ”1” bit and which is a

2



Action Code Distance
Right turn 0b0001
Left turn 0b0010
Change lane (right) 0b0011
Change lane (left) 0b0100
Merge (right) 0b0101
Merge (left) 0b0110
Offramp 0b0111
Temporarily change lanes (incident) 0b1000
Speed (speeding up) 0b1001 Not used
Speed (slowing down) 0b1010 Not used

”0” bit. Autonomous vehicles will constantly listen for the
preamble, which is possible because there is little concern
for power conservation due to the large size of car batteries.

The next three bits represent the version number of the
protocol. It is important to know the version of the proto-
col because a different version might mean that the receiver
has to change the way it interprets a data packet, and if the
version number is invalid the packet is dropped and we as-
sume there was an error in transmission or reception. The
next four bits represent the action that the transmitting car
will take. Actions vehicles might take are turning, merg-
ing, and changing speeds, and are represented as predefined
codes transmitted as a positive integer. The final eight bits
represent the distance from the transmitting vehicle to the
area where the vehicle will enact the action, where the dis-
tance is measured in meters. This final section is all zeros if
the action doesn’t require a distance attribute.

Below we have a table of the different values we used, in-
cluding whether they relied on the distance metric and what
the intent is (with limited information as to why they’re do-
ing it).

3.3 Architecture
In order to transmit data, we used a piezoelectric speaker, as
illustrated in Figure 2, which has a frequency response rang-
ing from 5kHz to 30KHz. This speaker was connected to a
computer through the auxiliary port and the computer ran a
program that generated AUCS data packets. The receiver
was another computer that listened to the transmission with
its built-in microphone and translated the signal into bits.

3.4 Signal Interference
There are two primary sources for signal interference in our
system. One is from other cars using the AUCS protocol, and
the other is from cars using ultrasonic bands to get relative
distances to other cars.

Our first method of preventing interference is a band pass
filter to remove lower frequency road noises and noise from

Figure 2: The KSN 1193A piezoelectric speaker from Piezo
Source [5].

the surrounding area. The second primary method of pre-
venting signal interference is transmitting signals at random
frequencies, where we attempt to detect the high and low
frequency signals (representing a 1 and 0 bit) by checking
frequency differences first, instead of looking for particu-
lar frequencies. This should be a relatively safe method of
transmitting signals, and although we expect interference,
we think it should be manageable. We can calculate the prob-
ability of any two signals interfering by using the following
equation:

1− n!
nk(n− k)!

• Where n = number of frequency slots to communicate
over,

• k = number of vehicles trying to communicate in the
same airspace

This suggests that over a frequency range of 48 kHz to 50
kHz (n=2000), if you had 4 cars attempting to communicate
their own signal, we’d experience a .3% chance of a signal
collision, requiring a re-transmit. Although our system acts
like slotted ALOHA, in the sense that it communicates over
certain bands or different frequencies, it does not listen for
interference to see if it must send again. The algorithm ex-
pects many transmissions until the intended action has been
performed, so if collision occurs it will simply collide and
re-transmit as if it didn’t collide at all.

As other cars attempt to calculate the distance between
them and other vehicles, they ping random frequency’s out
from the sensor and listen back for the response. This is oc-
curring over the same bandwidth we’re attempting to com-
municate on, potentially causing a problem. However, this
sort of interference shouldn’t be a problem because the pings
from other cars are short enough that their relative power
compared to the intended signal on an FFT over the sig-
nal period should be negligible, and because our system can
safely ignore them even if they’re near the frequencies we’re
listening for. The signals can show up if there are no other
signals occurring at that point, however the probability of the

3



random pings faking the preamble of a message, let alone
the header, and doing so repeatedly is abysmally small, and
poses no real threat to the user.

3.5 Doppler Shift

Lastly, we had to take into account the possibility of the
Doppler Shift negatively impacting our performance. This
might shift a frequency up or down depending on the direc-
tion the two vehicles are traveling. Given an initial frequency
of f0, we can calculate the new frequency we might see as
the following:

f = f0
c± vr

c± vt

Where vr is the velocity of the car receiving and vt is the
velocity of the car transmitting.

Since the absolute frequency isn’t known, cars are free
to shift frequency due to the Doppler Shift. The problem
that arises is when one is accelerating while transmitting and
changes frequencies by the time it has finished sending the
signal. This shouldn’t be a problem however due to how
short our packet lengths are, as the resulting frequency dif-
ference would be minimal.

There additionally might be changes in the packet length,
however, due to the Doppler Shift. An 18 bit packet hav-
ing each bit transmitted over the course of 1ms is expected
to take 18ms to transmit. If one car was moving at 60mph
and another was moving at 45, each packet could be inter-
preted by the faster car as having a total length of 18.62ms,
where each bit only takes .98ms to transmit. Although at
lower speed differences the issue is negligible and the pack-
ets are able to be read, this poses a major problem for sus-
tained error, meaning one car repeatedly reads a packet in-
correctly and changes its behavior based on the wrong in-
formation. This could easily be corrected at the receiver by
including information about the other car’s speed and adjust-
ing the length of each bit it expects to read. We can identify
which car is sending the signal by cross referencing the point
cloud with the sensor we received the signal on, and adjust-
ing for the time to read each bit. This method proved to be
very successful in accurately reading transmitted packets.

4 Design

The overall design of the system can be broken down into
two parts: the transmitter and the receiver. The transmitter
constructed a signal based off of randomly selected high and
low frequencies, while the receiver had to interpret this high
and low frequency, and then translate it into a code and dis-
tance.

4.1 Transmitter

The transmitter simply took a high and low frequency, and
turned it into a set of points which it then produced sound
for. Notably, it tracks the phase of each frequency and
resumes the next frequency at that phase to improve the
resulting audio from the speaker and reduce noise. The
algorithm is approximated by the following.

generateSignal(dataSet)

lf = rand_low_freq

hf = rand_low_freq + frequency_shift

bits = [1,0,1,0,0,1,dataSet]

freqs = ones(length(bits)) .* lf

% assign 1 bits to high frequency

for 1 = 1:length(bits)

if bits(i) == 1

freqs(i) = hf

end

end

% add frequencies to signal

for i = 1:length(packet)

t = 0:1/fs:bit_duration;

f = sin(2*pi*packet(i).*t + phase);

% update phase

phase = phase + 2*pi*packet(i)*bit_duration;

% add in next position

ff(start_leg:end_leg) = f;

end

end

4.2 Receiver

Our receiver worked by plotting the most powerful frequen-
cies and then finding patters in this data to distinguish the
high and low frequencies, as well what data was being sent.
Knowing the anticipated length of time for each bit sent, we
calculated an FFT over each of those lengths of times, found
the most prominent frequency, and assigned that to a 0 or 1
bit. Once we verified the preamble and header to be correct,
we were able to use the rest of the FFT data to find each of
the proceeding bits and translate the data packet into the in-
tent of the nearby car. In practice, we’d continue to receive
multiple of these packets every second, and would be able to
cross check them to remove bit error.

5 Evaluation

When evaluating AUCS, we collected data in a controlled
environment using a PiezoSource speaker and a MacBook

4



Figure 3: On the left is the power plot of an example set
of bit data. On the right is the data plotted out by our FFT
algorithm, which was then successfully able to recreate the
signal.

2016 microphone, all done at lower frequencies due to the
physical limitations of the MacBook and speaker.

5.1 Length of Bit Signals
The length in time of each bit was important to how well the
receiver was able to interpret a data packet. Our goal was to
send packets as fast as possible in order to avoid Doppler
Shift effects, while also making sure that the packet was still
readable. We tried having the receiver sample at .2ms per
bit, but upon creating the spectrogram we found that .2ms
was much too fast for the receiver, as can be seen in Figure
5. We found that making the data packet transmit bits at 2ms
intervals allowed for a reasonably fast transmission rate that
still allowed the receiver to distinguish between a 0 and a 1
bit, which is demonstrated in Figure 4.

Figure 4: Above is a signal generated with data, where each
bit was transmitted over 2ms. This allowed us to create high
resolution bit maps where the bits are distinguishable from
each other.

5.2 Successful transmission
We had high levels of success when transmitting in a con-
trolled environment, such as the packet in Figure 3, and did

Figure 5: Our .2ms signal, where you can see the signal
strengths mixing. This is primarily due to the lack of resolu-
tion in our microphone, preventing us from communicating
over faster bitrates

not fail to read or transmit a bit while operating within the
range of our microphone. We performed a variety of tests,
where each bit was sent with a duration of 2ms and each
packet would take 36ms to transmit. This gave it a total
throughput of 500 bits per second, or 62.5bytes per second.

5.3 Transmitting with interference
In the second half of our evaluation we attempted to send
signals with ’pings’ from ultrasonic speakers that were
trying to calculate distance from nearby cars. Although
there is variation in lengths of time and frequencies used
by different manufacturers, we approximated these ’pings’
by adding higher and lower frequencies to the generated
data, and then introduced noise by outputting it through the
speaker and listening through a microphone. We found that
pings relatively small in size compared to the signal were
largely ignored and had little impact on our data.

6 Future Work

Something we’d be interested in is testing data with OEM
hardware. The microphone we used to implement the re-
ceiver could only receive signals up to around 20 kHz, and
the maximum frequency that our speaker could transmit at
was 30 kHz. Using an ultrasonic sensor from a Tesla or other
semi-autonomous vehicle would allow for better insight into
exactly what roadblocks we would face when attempting to
communicate between vehicles. Ultrasonic sensors in au-
tonomous vehicles operate around 48 kHz, so for our exper-
iments we operated at a lower frequency than most of the
automotive world.

The transmitter and receiver that we tested AUCS with
were both stationary. Since AUCS will be implemented in
cars, we should create an environment that is closer to how

5



Figure 6: This is a 4ms signal with multiple disturbances
in the preamble, approximating interference from distance
signals.

AUCS would be used by cars. In a future set of testing we
could hook up ultrasonic speakers to two cars and test them
on the road, to see if we can communicate in a real world
environment.

7 Contributions

Thomas implemented the transmitter code to successfully
emit sound at varying frequencies. Ajene discovered FSK
and came up with he name AUCS. Both partners worked
on the receiver, experimenting with how fast the receiver
was able to translate the signals into bits. Both partners de-
cided how to implement the protocol and we were fortunate
enough to take feedback and help from our Mobile Network-
ing class.

References

[1] DAVID TOFSTED, SEAN OBRIEN, S. D. E. C. S. E.
An examination of the feasibility of ultrasonic commu-
nications links.

[2] HANG QIU, FAWAD AHMAD, F. B. Avr: Augmented
vehicular reality. ACM MobiSys (2018).

[3] PASCAL GETREUER, CHET GNEGY, R. F. L. R. A. S.
Carspeak: A content-centric network for autonomous
driving. ACM Sigcomm 20, 6 (2012), 1277 – 1290.

[4] PATRICK DE NIET, S. H. Chromecast: Security analysis
of the guest mode. University of Amsterdam (2015).

[5] SOURCE, P. Ksn 1192a-1193a.

[6] VASILIOS MAVROUDIS, SHUANG HAO, Y. F. F. M.
C. K., AND VIGNA, G. On the privacy and security

of the ultrasound ecosystem. Proceedings on Privacy
Enhancing Technologies 2017, 2 (2017), 95–112.

6


