ECES532: Spooky Author NLP and LSR

Table of Contents

By Thomas Hansen and JUNior QUINTENOcoouuuiiiiiiie ettt 1
CategoriZing TNEIT TEXTE ... ittt ettt e e ettt e ettt e e et e e e e eee 2
Testing on SMall SAMPIE SEL ... e e 3
LLBSSD USE .. ettt ettt ettt et et et et e e 7
RE B ENCES ..ot et 8

By Thomas Hansen and Junior Quintero

In our project we've decided to use our dataset from the Kaggle Spooky Author Identification com-
peition[0]

Herewe'regiven alarge dataset and testing set of datafor comparing work done by different horror authors,
and our goa will be to tell if we can differentiate the authors from one another just based off analyzing
different words and styles they use.

Initially we'll test the ideawith linear regression, which we expect to get poor rates for, and then we'll use
different techniques to read in the data, such as changing the number of senteceswe read in at atime to
improve accuracy, or trying new tequniques not used in class.

% For this project you may want to have matl abNLP installed for sone
% ver si ons.

%read in file, set training data to td
filenane = "train.csv';

file = readtabl e(fil enane);

td = tabl e2array(file);

% Shorten td to reasonable size, can renove |ater
%td = td(1:10000,:);

[n,~] = size(td);

eap_occurance = 0;
hpl _occurance = O0;
mas_occur ance = 0;

for i = 1:n
if strenp(td(i, 3)," EAP")
eap_occurance = eap_occurance + 1;
el seif stremp(td(i,3), HPL")
hpl _occurance = hpl _occurance + 1;
el seif stremp(td(i,3), MAS")
MAS_occurance = mws_occurance + 1;
el se
fprinf('Didnt work on Iine %\n', i);
end
end

ECES32: Spooky Au-
thor NLP and LSR

% This total should now equal n

if (n == (eap_occurance + hpl _occurance + mas_occurance))
fprintf(' nunber of nanmes categorized correctly.\n");

end

nunber of nanmes categorized correctly.

Categorizing their text

Now that we havethe size of each required array, we can enter each word into an array for the three authors,
and then compare them directly that way.

Recall our end game is we want to calculate the weights, so w = X\y, and X will be a matrix of the given
words/sentences, while y will be the estimate for each author.

Another way to write thisis that X would be the number of times aword comes up in a sentence, so that
times aweight would be the likelihood of it being a specific author.

author = of word per sentence * it's an author

So we would see X as perhapse alarge matrix, where each row is a different sentence, each column isthe
rate at which a word shows up, and each row in the w is the weight for the corrisponding word column
in the X matrix. From here we produce ay matrix, thisy matrix will be a column with a height equal to
the number of sentences, where each sentence is aweight.

Additionally I'll note that the words chosen are to some extent arbitrary. We've been basing words by each
author off of other research into each author based off of word use frequency. Additionally we've been
avoiding nouns and hames as even though some authors use them more often than othersit can till throw
off the data significantly. Lastly after taking this into account, we've use/thrown out words with high or
low weights, where high weights suggest it's more relevant than alow weight.

MWS [1] ELP[2] HPL [3][4]

% Li st of words we've chosen, we've limted the size so that the

mat ri x

%multiplication may still run quickly.

words =

{"ascertain','lay', ' my',"surcingle ,"hand ,"thus','to','nor','subject','suffer’',’

[wn,wn] = size(words);

data = zeros(wmn);
% Need to collect word data for 100 sentences
for i = 1:wm
for j = 1:n
wordLoc = strfind(td{j, 2}, words{i});
data(i,j) = length(wordLoc);
end
end

% Flipping matrix as it was accidentally built upsidown.
X = transpose(data);

% Now we must build the y matrix, it would be best to incorporate this

in
% w th the above algo |ater on, though the QCN*2) tinme conplexity
remai ns

an
freq
likelihood

ECE532: Spooky Au-

thor NLP and LSR
% the same. This will be the true value y matri x.
y = zeros(n,1);
for i = 1:n
if (length(strfind(td{i,3}, 'EAP")) >= 1)
y(i, 1) = +1;
el se
y(i, 1) =-1;
end
end

% So we can build the weight setup as

w = X\y;
% And then we'll test it for EAP in the next 10 natricies
Warni ng: Rank deficient, rank = 64, tol = 1.942057e-09.

Testing on small sample set

here we're testing our results on a sample set of 1000.

test = table2array(file);
test = test(10000: 10999, :);
n = length(test);

% W need to set up the environment by copying and pasting the code
from
% above but with a test
X test = zeros(wmn);
for i = 1:wm%for each word
for j = 1:n %for each sentence
wordLoc = strfind(test{j,2}, words{i}); %if the word exists
in the sentence
X test(i,j) = length(wordLoc); % how many tinmes the word shows
up
end
end
X test = transpose(X test); %corrects the matrix orientation

% So the predicted vector is
y_hat = X test*w

% And we can conpare this to the expected output, so
y_expected = zeros(n,1);
for i = 1:n
if (length(strfind(test{i,3}, 'EAP")) >= 1)
y_expected(i) = +1;
el se
y_expected(i) = -1;
end
end

% Now we test it to see easily how many were right
vals = zeros(20,2);

ECE532: Spooky Au-

thor NLP and LSR
for i = 1:n
val s(i,1) = y_hat(i);
val s(i,2) = y_expected(i);
end

% sum up right answers
sum = 0;
for i = 1:n
if (sign(vals(i,1)) == sign(vals(i,2)))
sum = sum + 1,
val s(i,1);
val s(i, 2);
end
end

fprintf(' There were % right answers out of %, which equals a %.2d
correct percentage.\n', sum n, (sumn)*100);

There were 596 right answers out of 1000, which equals a 5.96e+01
correct percentage.

Here the goal is to run the same algorithm we ran in the least squares section, however now we'll want
to input multiple sentences to see if we can improve our ability to distinguish one author from another.
Eventually we'll be putting thisin amakeshift decision tree, whereit'll determine which of the three authors
wroteiit.

First we count and split the test data into each of the authors

filenanme = "train.csv';

file = readtabl e(fil enane);

td tabl e2array(file);

td td(18000:end,:); %starts at quasi random point near the end

[n,nM = size(td);

sentence_si ze = 5;
eap_occurance = 0,
eap_sentences = cell (1, sentence_size);
hpl _occurance = O0;
hpl _sentences = cell (1, sentence_size);
mas_occur ance = 0;

m\s_sent ences
for i = 1:n
if strenp(td(i, 3)," EAP")
eap_occurance = eap_occurance + 1;
i f (eap_occurance <= sentence_size)
eap_sent ences{eap_occurance} = td(i,2);

cell (1, sentence_si ze);

end
el seif stremp(td(i,3), HPL")
hpl _occurance = hpl _occurance + 1;
i f (hpl_occurance <= sentence_size)
hpl _sentences{hpl _occurance} = td(i,2);
end
el seif stremp(td(i,3), MAS")

ECES32: Spooky Au-
thor NLP and LSR

MAS_occurance = mws_occurance + 1;
i f (mas_occurance <= sentence_size)
mavs_sent ences{mns_occurance} = td(i, 2);

end

el se
fprinf('Didnt work on line %\n', i);

end

end

% This total should now equal n

if (n == (eap_occurance + hpl _occurance + mas_occurance))
fprintf(' nunber of nanes categorized correctly.\n');

end

% Now t hat we have cell arrays of each of the 3 authors, we can show
t hat
%this will nore readily prove

tnp = zeros(1, | ength(eap_sentences));

for i = 1:1ength(eap_sentences)
% we run the function on each sentence
tnp(i) = isAuthor(words, eap_sentences{i}, w;
end
newSum = 0O;
denom = 0;
for i = 1:1ength(eap_sentences);

denom = denom + 1;
if (sign(y_expected(i)) == sign(tmp(1,i)))
newSum = newSum + 1;
end
end
fprintf('So on average it correctly guesses EAP sentences %. 1d
percent of the tinme', 100*(newSum denom);

nunmber of nanes categorized correctly.

So on average it correctly guesses EAP sentences 60 percent of the
tine

Using a decision tree to improve L SR sentence multiple timesit'll decide it's either EAP, HPL or MWS.

eap_w = w,

hpl _w = 2*rand(size(w)) - 1, % qgenerates author weights
mvs_w = 2*rand(size(w)) - 1;

% hpl _w = generate W) ;

% mMvs_w = generate W) ;

% And given the sets of sentences fromeach of the authors, we can use
a

% for loop and the i sAuthor function to deterni ne whether each
sentence is

% part of the author or not. If it isn't, the decision tree will break
down

% and try another author. If it recieves a positive result, it'll

conti nue

ECES32: Spooky Au-

thor NLP and LSR
%on to say who it is.
% i nput sent ences
% i sAut hor (EAP)
% no/ < 50%< \ yes
% / \
% i sAut hor (HLP) EAP
% no/ < 50%< \ yes
% / \
% i sAut hor (MAB) HLP
% no/ < 50%< \ yes
% use highest \
% saved % MAS
% |/ | \

% EAP HPL MAS
%
% Deci sion Tree inplenmentation:

% X auth_sent = eap_sentences'; %n = 50; decision here is arbitrary
X auth_sent = cell (sentence_size, 3);

tnp_cell = eap_sentences';

X auth_sent(:,2) =tnmp_cell(:,1);

y_aut h_expected = ones(sentence_size,3); % This just neans that
they're all the
% correct author, since Xis the sane

eap_percent = isAuthors(X auth_sent, words, eap_w, y_auth_expected);
if (eap_percent > .5)
% Then it's EAP
fprintf(' Sentences were by EAP\n');
el se
hpl _percent = isAuthors(X auth_sent, words, hpl _w,
y_aut h_expect ed);
if (hpl_percent > .5)
% Then it's HPL
fprintf(' Sentences were by HPL\n');
el se
mvs_percent = i sAut hors(X aut h_sent, words, ms_w,
y_aut h_expect ed);
if (mws_percent > .5)
% Then it's MAS
fprintf(' Sentences were by MAB\n');
el se
% Here they're all bel ow our margin of error
if (eap_percent > hpl _percent && eap_percent >
mM\s_per cent)
% EAP had the npbst correct
fprintf(' Sentences were by EAP, caught on second
round.\n");
el seif (hpl _percent > eap_percent && hpl _percent >
mM\s_per cent)
%Ilt's HPL
fprintf(' Sentences were by HPL, caught on second
round.\n");

ECES32: Spooky Au-
thor NLP and LSR

el se
%Ilt's MA5 or they all match percentages
fprintf(' Sentences were by MA5, caught on second
round.\n");
end
end
end
end

% So the function

% i SAut hors(test, words, w, y_expected)

%1ls used to return the percentage of results. Additionally it's done
in a

% fashi on where each if is enbeded in an else, and this is done to
reduce

% t he nunber of conputations needed, while still saving the percentage
% val ues.

ans =

-0. 0261 -0. 7846

ans
4. 3343 8. 3253

Sentences were by HPL

Lasso use

For comparison hereis the result of the built in LASSO regression on the data

[B, Fitlnto] = lasso(XvYy);
| assoPl ot (B, Fitlnto,' Plot Type','Lanbda',' XScale',"'log");

% The pl ot shows the nonzero coefficients in the regression for

vari ous

% val ues of the Lanbda regul ari zati on paraneter. Larger val ues of
Lanbda

% appear on the left side of the graph, meaning nore regul arization

%resulting in fewer nonzero regression coefficients.

%

% The dashed vertical |ines represent the Lanbda value with mnim
nean

% squared error (on the right), and the Lanbda value with mnimal nean
% squared error plus one standard deviation. This latter value is a
recomended

% setting for Lanbda. These |ines appear only when you perform cross
val i dati on.

% Cross validate by setting the 'CV nane-value pair. This exanple
uses

% 10-fol d cross validation

ECES32: Spooky Au-
thor NLP and LSR

%

% The upper part of the plot shows the degrees of freedom (df),
nmeani ng t he

% nunber of nonzero coefficients in the regression, as a function of
Lanbda.

% On the left, the |large value of Lanbda causes all but one
coefficient to

%be 0. On the right all five coefficients are nonzero, though the
pl ot shows

%only two clearly. The other three coefficients are so snall that you
cannot

% visually distinguish themfrom?O

%

% For small values of Lanbda (toward the right in the plot), the

% coefficient values are close to the | east-squares estimate.

%

Trace Plot of coefficients fit by Lasso

df
1 3 16 2639 44 5254 61 64 65

0.5

-0.5

References

[0] Spooky Author Identification | Kaggle, www.kaggle.com/c/spooky-author-identification.

[1] November 22, 2013 By Andy H. (NY). Mary Shelley's Frankenstein. Vocabulary.com,
www.vocabulary.com/lists/344129.

[2] (NY), July 252013 By Vocabulary.com. Poe's Favorite Words, collected by Charles Harrington Elster.
Vocabulary.com, www.vocabulary.com/lists/285259.

ECES32: Spooky Au-
thor NLP and LSR

[3] H.P. Lovecrafts 10 Favorite Words and a Free Lovecraft eBook. Tor.com, 14 Dec. 2014,
www.tor.com/2011/03/01/l ovecraft-favorite-words-free-ebook/.

[4] Wordcount for Lovecraft's Favorite Words. The Arkham Archivist Wordcount for Lovecrafts Favorite
Words Comments, arkhamarchivist.com/wordcount-lovecraft-favorite-words/.

[5] Green, Rachel M, and John W Sheppard.#Comparing Frequency- and Style-Based Featuresfor Twitter
Author Identification.# Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Re-
search Society Conference, www.aaai .org/ocs/index.php/FLAIRS/FLAIRSL3/paper/viewFile/5917/6043.

[6] Zhao, Peng, and Bin Yu.#On Model Selection Consistency of Lasso. Journa of Machine Learning
Research, val. 7, Nov. 2006, pp. 2541#2563., www.jmlr.org/papers/volume7/zhao06a/zhao06a.pdf.

Published with MATLAB® R2016a

	Table of Contents
	By Thomas Hansen and Junior Quintero
	Categorizing their text
	Testing on small sample set
	Lasso use
	References

